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An investigation of the equivalent circuits of loudspeakers in vented boxes shows that
it is possible to make the low-frequency .acoustic response equivalent to an ideal high-
pass filter or as close an approximation as is desired. The simplifying assumptions appear
justified in practice and the techniques involved are simple.

The low-frequency performance of a loudspeaker can be adequately defined by three
parameters, the resonant frequency f., a volume of air V,,, equivalent to its acoustic
compliance, and the ratio of electrical resistance to motional reactance at the resonant
frequency Q.. From these three parameters, the electroacoustic efficiency n can be found
also. A plea is made to loudspeaker manufacturers to publish these parameters as basic
information on their product. The influence of other speaker constants on these param-
eters is investigated.

When f, and V,, are known, a loudspeaker box can be designed to give a variety of
predictable responses which are different kinds of high-pass 24-dB per octave filters. For
each response, a certain value of Q is required which depends not only on the Q. of the
loudspeaker but also the damping factor of the amplifier, for which a negative value is
often required.

The usual tuning arrangement leads to a response which can be that of a fourth-order
Butterworth filter. This, however, is only a special case, and a whole family of responses
may be obtained by varying the volume and tuning of the box. Also an empirical “law”
is observed that for a given loudspeaker the cutoff frequency depends closely on the
inverse square root of the box volume. The limitations of this “law” may be overcome
by the use of filtering in the associated amplifier. For example, for a given frequency
response, the box volume can be reduced at the price of increased low-frequency output
from the amplifier and vice versa, with little change in the motion required of the loud-
speaker.

Acoustic damping of the vent is shown to be unnecessary. Examples are given of
typical parameters and enclosure designs.

Editor’s Note: The theory of vented-box or bass-reflex
loudspeaker baffles has always seemed to have an air of
mystery, probably because the total electroacoustic sys-
tem has four degrees of freedom and seems four times
as complicated as the closed-box baffle with its two de-

valuable calculations. Those working in the design of
loudspeakers have used these analysis techniques and
probably asked essentially the same seven questions that
A. N. Thiele recognized at the turn of the previous
decade.

grees of freedom. Beranek gives a good foundation for
theoretical analysis and Novak has performed numerous

* Presented at the 1961 IL.R.E. Radio and Electronic Engi-
neering Convention, Sydney, N.S.W., March 1961. Reprinted
from Proceedings of the IRE Australia, vol. 22, pp. 487-508
(Aug. 1961). The author was formerly with E.M.I. (Aust.)
Ltd., Sydney, N.S.W.
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The seven questions and their answers were published
in the August 1961 issue of the Proceedings of the IRE
Australia, and the elegance of the answers adequately
justifies republication of Thiele’s work in the Journal of
the Audio Engineering Society. In his classic discourse
Thiele observes that the topology of the equivalent cir-
cuit (Fig. 1) is simply that of a high-pass filter. If suffi-
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cient simplification can be justified, Thiele reasons that
the methods of modern network synthesis should be
applicable to loudspeakers. This is a profound observa-
tion because it means that once the system transfer
function is chosen, a logical sequence can be followed
to specify driver and baffle parameters. This is much
more efficient than the cut and try methods based on
cither analysis or measurements,

Although the idea is profound because of its simplicity,
much work is required to develop, utilize, and demon-
strate its use. In the interest of compatibility with format
in this Journal, we have received permission from A. N.
Thiele to republish his work in two parts. This first part
develops the synthesis approach and summarizes all of
vented-box design in a table of 28 alignments. The sec-
ond part will apply the method and draw some very
pertinent conclusions about efficiency, driver Q, box vol-
ume, and amplifier output impedance.

The high point of this work is Table I which gives 28
alignments for vented-box loudspeakers. I have been so
impressed with this table that I have written a Fortran
program to quickly apply Thiele’s synthesis methods to
any loudspeaker with adequately known parameters. This
program and a run or two for typical woofers will be
published after Part II.

In considering this manuscript for republication, Thiele
has suggested that after 10 years his only change of atti-
tude would be to change the emphasis in Section XIV
(Part II). In contrast to the original preference for use
of a closed box (which is still quite valid), Thiele would
now emphasize the use of a vented box for measure-
ments. This is indeed a trifling matter and in concurring
with Thiele’s opinion, I can only add emphasis to how
well this paper has passed the test of time—it is just as
pertinent now as it was ten years ago.

J. R. Ashley

I. INTRODUCTION: The technique of using a vented
box to obtain adequate low-frequency response from a
loudspeaker has been known for many years. The prin-
ciple seems simple, yet the results obtained are variable.
Since comparatively cheap and reliable methods of acous-
tic measurement, especially at low frequencies, virtually
do not exist, the only check of results is the “listening
test.” The listening test is after all the final criterion of
the performance of an electroacoustic system, but as a
method of adjusting for optimum it is very poor indeed.
Quite apart from one’s prejudices and memories of pre-
vious “acceptable” equipments, the adjustment of a vented
box in ignorance of the loudspeaker parameters involves
two simultaneous adjustments, box tuning and amplifier
damping. And again there is a strong temptation to ad-
just the low-frequency response to something other than
flat to “balance” response errors at high frequencies,
when in fact the two problems should be tackled sepa-
rately.

For a long time it has seemed to the writer that the
methods of design of vented boxes were unsatisfactory,
leaving a number of questions unanswered.

1) What size of box should be chosen? Usually it
seems the larger the better, but how much better is a
large box and what penalty does one pay for a small box?
And for a given speaker, what is a “large” box or a
“small” box?

2) What amplifier damping should be used? In general

the answer is, the heavier the damping the bettep; though
with high-efficiency speakers this could cause’a loss of
low frequencies. But then again, negative damping is
sometimes used, especially in the United States. And
when vented enclosures often give excellent results, why
should they be known by some as “boom boxes”?

3) Is it advisable or necessary to use acoustic damping
to flatten the response? Some claim good results [1] while
others [2] warn against it. The general principle of flat-
tening response with parasitic resistance, and thus dis-
sipating hard-won power, seems wrong, especially in an
output stage and when a maximum bandwidth is sought.
The principle seems to apply equally to an amplifier—
loudspeaker—box combination and a video output stage.

4) To what frequency should the vent be tuned? The
conventional answer is to tune it to the loudspeaker
resonant frequency, but Beranek [3, p. 254] mentions that
“for a very large enclosure, it is permissible to tune the
port to a frequency below the loudspeaker resonance,”
while small boxes are sometimes tuned above loudspeaker
resonance.

5) What should be the area of the vent? The con-
ventional answer is to make it equal to the piston area
of the loudspeaker, but Novak [2] states that “it is per-
missible to use any value of vent area,” and again “the
vent area should not be allowed to be less than 4 in2.”
Again, should we use only a hole for the vent or should
we use a duct or tunnel?

6) If we equalize the amplifier to correct deficiencies
in the speaker and enclosure, what penalties result for
example in distortion? Can we trade amplifier size for
box size?

7) Assuming that we know how to design a box (and
associated amplifier) given the loudspeaker parameters,
how may the parameters be measured?

There are other questions that could be asked but the
seven above seem the most important; at any rate, they
are the ones that the present paper hopes to answer.

ll. DERIVATION OF BASIC THEORY

The theory of operation of loudspeakers in vented
boxes has been covered so many times in the literature
[3, pp. 208-258], [4] that it should be unnecessary to
repeat it here; therefore only sufficient of the theory will
be quoted to make the present approach intelligible.

This approach derives from Novak [2] to whom the
reader is referred, not only for his method, but for his
introductory paragraph . . . “Trade journals tell of ‘all
new enclosures, revolutionary concepts, and totally new
principles of acoustics’ when in reality there is a close
identity with . enclosure systems described long ago in
well-known classics on acoustics.” This should be framed
and hung on the audio engineer’s wall alongside Lord
Kelvin’s dictum. The present paper is the result of a dif-
ferent emphasis on, and interpretation of, Novak’s treat-
ment. It should be emphasized that, unless stated spe-
cifically otherwise, the results apply only to the “piston
range” of the speaker. This is the region where the cir-
cumference of the speaker is less than the wavelength of
radiated sound, i.e., below 400 Hz for a 12-inch speaker,
and below 1 kHz for a 5-inch speaker. The performance
of loudspeakers above the piston range is another subject
altogether.

We will be dealing later with a simplified equivalent
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Fig. 1. Complete (electromechanical) acoustical circuit of
loudspeaker in vented box (after Beranek [3]).

circuit, but first consider Fig. 1 in which the complete
equivalent circuit of the loudspeaker and enclosure is
given in acoustical terms.

We note that there are three possible equivalent cir-
cuits, electrical, mechanical, and acoustical. To convert
from electrical to mechanical units,

Z, = B2/Z, (1)

where
Z, celectrical impedance
Z,, equivalent mechanical impedance
B magnetic flux density in air gap
! length of wire in air gap.

Again to convert from mechanical to acoustic units,
Za = Zm/Sd2 (2)

where
Z, acoustical impedance
Sy equivalent piston area of diaphragm (usually
taken as area inside first corrugation).

Taking then in Fig. 1 the first impedance after the gen-
erator which is the acoustical equivalent of the electrical
resistance of the amplifier output impedance R, in series
with the voice coil resistance R,, we can see that the
various equivalents for this impedance are

Z,= R,+R, (3)
Z, = B22/(R,+R,) 4)
Z, = B2/S(R,+R,). (5)

E, open-circuit voltage of audio amplifier
M,; (= M,,/S;%) acoustic mass of diaphragm and
voice coil
mechanical mass as usually measured
Cqs accustic compliance of suspension
R,, acoustic resistance of suspension
R, acoustic radiation resistance for front side of
loudspeaker diaphragm
M,; acoustic radiation mass (air load) for front
side of loudspeaker diaphragm
M,, acoustic mass of air load on rear side of loud-
speaker
R,, acoustic resistance of box
C,s acoustic compliance of box
R,,e acoustic radiation resistance of vent
M,, acoustic radiation mass (air load) of vent
M,, acoustic mass of air in vent
R,, acoustic resistance of air in vent
U, volume velocity of cone
U, volume velocity of box
U, volume velocity of port, or vent.

The advantage of using this large complete equivalent
circuit in the first place is that the equivalent circuit of
the loudspeaker in a totally enclosed box may be shown
by removing the mesh representing the vent. To repre-
sent the speaker operated in an infinite baffle, C,; and
R,y are short-circuited. If the speaker is operated in open
air (unbaffled), the circuit is as in an infinite baffle, but
the values of R,,; and M,; are modified [see 4, Fig. 5.2].
The details of these circuits are very well covered in [3]
from which Fig. 1 and the accompanying symbols are
taken.

To make the circuit more manageable, we simplify it
to Fig. 2.

2|?
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Fig. 2. Simplified acoustical circuit /5f loudspeaker in vented
box.

|

1) The three acoustic masses M4, M,;, and M,, are
lumped together to make a single mass M,,. However,
we must be careful to remember that this is an artifice.
M,, is not fixed, and some error results by assuming it
to be so. For example, the reduction of M,, and hence
of M,, when the speaker is tested in open air causes a
rise in resonant frequency, which must be accounted for
in measurements, as in Section XIV.

2) R, and R,,, are neglected in the equivalent circuit,
even though they are responsible for the acoustic output
of the loudspeaker. The whole essence of Novak’s theo-
retical model which makes a simple solution possible
is that a loudspeaker is a most inefficient device. In mea-
surements of fifty loudspeakers using the method of Sec-
tion XIV covering a wide range of sizes and qualities,
efficiencies ranged between 0.4% and 4% . For this reason,
the radiation resistances may be safely neglected. Since
radiation resistance varies with frequency squared, this
simplifies analysis considerably. For, as pointed out in [3,
p. 216], the radiation resistance of a loudspeaker in a
“medium-sized box (less than 8 ft3)” is approximately
the radiation impedance for a piston in the end of a long
tube. And the radiation resistance of the vent (or port)
is the same. Thus

Rarl = Rar2 = ﬂ'f2p,,/C (6)

where p, is the density of air and c is the velocity of sound
in air.

Note that the radiation resistance is independent of the
dimensions of the piston or vent. Note also that Eq. (6)
is an approximation which is accurate only in the piston
range of the loudspeaker (compare [3, Fig. 5.7] or [4,
Fig. 5.2]).

3) My, and M,, are lumped together as M,,, the total
air mass of the vent.

4) R, and R, are neglected since for most practical
purposes their Q is very high compared with that of the
loudspeaker, especially when its damping is properly con-
trolled by the amplifier.

For example, it will be shown later that the Q of speak-
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Fig. 3. Simplified mechanical circuit of loudspeaker in
vented box.
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er plus amplifier for a vented box will usually lic between
0.3 and 0.5. The Q of the vent, on the other hand, can be
found by combining [3, Egs. (5.54) and (5.55)] to give

0, = oM,/ Ry = (S,// ) ¥V +1.70a)/ (P +2a)  (7)

where
Q, effective Q of vent
S, area of vent (assumed to have constant cross
section)
I actual length of vent
a effective radius of vent
p  kinematic coefficient of viscosity; for air at
NTP, u = 1.56 X 10—5 m2/s.

Thus if $, = 4 in2, the bottom limit specified by No-
vak, and f = 25 Hz, then Q, = 64.

Since thesc are the smallest values of S, and f likely to
be found in practice, it is clear that little error will result
from this source, and this is confirmed in Section XI. In
the preceding discussion, the effect of M., and R, has
been neglected, but in no case investigated has the total
Q. fallen below 30.

5) As a result of measurements of fifty loudspeakers,
it appears that the Q, of the speaker due to R, lies usual-
ly between 3 and 10, so that this does not affect matters
greatly, but since R,; can be lumped with the equivalent
electrical resistance (see Eq. (8)) and because it has some
importance in the loudspeaker measurements of Section
X1V, it is included in Fig. 2

The mechanical equivalent circuit (Fig. 3) is derived
from Fig. 2 by multiplying all the acoustical impedances
by the conversion factor S;2 as in Eq. (2). Thus these
impedances represent the mechanical impedances at the
loudspeaker diaphragm due to the whole acoustical—
mechanical circuit. Since the conversion is obtained by
multiplying by a constant, the form of the circuit remains
the same. However, when the conversion is made from
Fig. 3 to Fig. 4, the electrical equivalent circuit, it can
be seen from Eq. (1) that an impedance inversion
takes place. Thus all series elements become parallel
elements, inductances become capacitances, and vice
versa. Thus L., is the electrical inductance due to the
compliance of the loudspeaker suspension, C,,, is the
electrical capacitance due to the mass of the loudspeaker
cone, C,,., is the electrical capacitance due to the mass
of the vent, and L., is the electrical inductance due to
the compliance of the box. In Fig. 4 an additional pair of
circuit elements which were neglected in the earlier cir-
cuits have been added within the dashed lines. These
are the inductance and shunt resistance (largely due to
eddy current loss in the pole piece and front plate) of
the voice coil.

It is hoped that this will not cause confusion. These
elements contribute very small effects at the low fre-
quencies we are considering, but show the reason for the

Cmev

Lceb

Fig. 4. Simplified electrical circuit of loudspeaker in vented
box.

shape of the resulting electrical impedance curve of
Fig. 5 above f,. However, this will be of greater impor-
tance when we come to testing procedures in Section XIV.

1ll. DERIVATION OF RESPONSE CURVE

The expression for the frequency response of the sys-
tem is obtained by analysing the circuit of Fig. 2. To
simplify the expression, we lump all the series resistance
into a total acoustic resistance,

at — Ras+ [3212/(Rg+Re)Sd2]' (8)

Now we have seen already that the radiation resistances
of speaker and vent must always be the same. And since
the radiated sound depends on the sum of the volume
velocities U, and U, (or rather their difference, since U,
derives from the back pressure of the speaker), then the
acoustic power output is —— T

W = NU(‘—Up!QR r1 %)

while the nominal electrical inpyt power is

W, = E2R,/(R,+R)% (10)
Thus the efficiency is
n = Wao/Wei
= [lUc_Upl2Rar1(Rg+R0)2]/(E!12Re)' (11)
Analyzing the circuit, we find that
(U.—U,)/[E,BI/Se(R,+R;)] = 1/pM , X
p4MasM(wCasCab
M M Cab+p MaDCaQCQbRat
+p2(M,C, + aCas T MyCap) T PCo Ry +1
(12)

To make the expression easier to manage we write
E(p) for the expression inside the square bracket on the
right-hand side which is a fourth-order high-pass filtering
function. Also if jo is written for p, the steady-state re-
sponse E(jw) is found. We also convert pM,, from the
operational form to the steady-state form joM,,, and then

substitute
M, = M,S42. (13)

This puts the expression for mass into a more intelligi-

§ fe f'., £ F‘n

FREQUENCY —

Fig. 5. Typical impedance curve of loudspeaker in vented
box.
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ble form, but it is emphasized that the total loudspeaker
mechanical mass M, includes not only the mass of the
cone plus voice coil, but also the mechanical equivalent
of the acoustic air load. The latter is only a small part
of the total, but varies with the speaker’s environment,
€.g., box volume [3]. Thus if we substitute Eqgs. (6), (12),
and (13) in Eq. (11),

1 = p,B2PS*|E(jw) [2/4ncR M, 2 (14)
or

0 = (p,/4wc) (B22S,2/R M, ) |[EGw) 2. (15)

Thus the expression for efficiency contains three parts:
1) a constant part containing physical constants,

2) a constant part containing speaker parameters,

3) a part |[E(jw)|? which varies with frequency.

IV. CONTROLLING THE FREQUENCY
RESPONSE

The problem of greatest interest is the control of fre-
quency response; so we consider first (3), [E(jo)|2, or
preferably its operational form E(p). To make this easier
to manage we substitute in E(p) of Eq. (12)

T82= (1/“’8)2:Mascas (16)
Tb2 = (l/wh)2 = M(wcab (17)
Qt = (Mas/cas)%/Rat (18)

where o, is the resonant frequency. wy is the box resonant
frequency, or more exactly, the frequency at which the
acoustic mass of the vent resonates with the acoustic ca-
pacitance of the box. It should not be confused, as is
often done, with f, or f, of Fig. 5, which are by-products
of f, and f, (see Eqgs. (105) and (106)).

Q, is the total O of the loudspeaker when connected to
its amplifier. The acoustic resistance in the loudspeaker
R,, has a small effect, but usually the resistances reflected
from the loudspeaker resistance R, and the amplifier R,
contribute the greater part of Q,. Then E(p) of Eq. (12)
becomes

E(p) =
p*T,2T 2

pT 3T+ p* (T T, /0Qy)
+p2 [ TI)2 + T,s'2 + szcus//cah] +p( TS/QI) + 1

(19)

For many purposes this is more conveniently written as

E(p) = 1/{1+1/pQ, T+
( 1/[)2) []/T7)2+1/Ts2+C(1~,/Cast2]

+1/p3T 2T+ 1/pA T2 T2).  (20)

This expression corresponds to Novak’s expression for
the modulus in his Eq. (15) which is simplified into his
Eq. (16). (Note that in the captions for his Figs. 7, 9, 11,
12, and 13, a positive sign is wrongly substituted for a
negative sign).

As stated before, this is a fourth-order high-pass func-
tion, that is, it has an asymptotic slope in the attenuation
band of 24 dB per octave, and can be written in the gen-
eral form

E(p) = 1/{1+x,/pTy+x,/p*T¢?
+x3/03T*+ 1/P4T04} (21)

which is defined by a time constant T, (= 1/w, the

nominal cutoff frequency) and three coefficients x;, x,, x3
which determine the shape of the response curve. In fact,
the general expression is often written with a constant
xo and x, instead of the two unity coefficients in the
denominator of Eq. (21); but the expression can always
be reduced to the form of Eq. (21) by division of the
whole expression by a constant, and suitable adjustment
of T, and the x coefficients. Considering Eq. (20) now
from the viewpoint of what can be done with a given
speaker, the parameters C,, and T, are fixed. Thus there
are three variables Q,;, T;, and C,;,, and it is possible to
achieve any desired shape of curve (i.e., any desired com-
bination of the three x coefficients); but in doing so T, is
determined (see Eq. (27)).

For identity between the two Eqs. (20) and (21}, the
coefficients of the various powers of p must be identical,
that is,

x1/To = 1/04T; (22)
xo/To?> = 1/T?+1/T3F+Cpy /Cp T2 (23)
X3/ To® = 1/Q,T,%T, (24)
1/Ty* = 1/T,2T 2. (25)
From these, the relationships can be established
T,/T, = x1/x; (26)
To/Ts = (x1/x3)% 27
Q= 1/(x1x3) % (28)
Cas/ca,b = (x1x'_'x3_x32—x12)/x12- (29)

The Hurwitz criteria
defined by Eq. (21) are

1) all the x coefficients are positive,

2) xyxoxy—x32—x42 is positive.

If (1) and (2) are true, then all the parameters deter-
mined by the four Eqgs. (26)—(29) are positive and there-
fore realizable. Thus we have in the four equations a set
of simple relationships which enable us to achieve, for
any speaker, any shape of low-frequency cutoft (fourth-
order) characteristic. The only requirement is that we
have sufficient freedom to choose a suitable box resonant
frequency 1/T;, box volume C,;, and total Q of speaker
plus amplifier Q,, and can accept the resulting value of T,.

The first parameter T, presents no practical difficulty;
the second, C,;, can cause trouble if space is limited, but
in this case, as shown in Section VII, we can work back-
ward and choose a suitable response characteristic to suit
the box size; the third, Q,, is controlled by the source
impedance of the amplifier. If the required Q; is greater
than the speaker’s natural Q, a positive output impedance
will be required of the amplifier and this can be controlled
by the usual negative feedback techniques. If less, a nega-
tive output impedance will be required, and this can be
achieved by applying feedback from a separate winding
on the voice coil, or by a combination of positive current
and negative voltage feedback. There is a practical limit
here if the degree of negative impedance required is too
large, but this will be discussed in Section XII.

[5] for stability of a network

V. \SOME PRACTICAL RESPONSE CURVE
APES

Fourth:Order Butterworth Response

Armed:\with Egs. (26)—(29) we can calculate the pa-
rameters required for different response characteristics.
The mos;' obvious one to try first is the fourth-order

///
/
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maximally flat (Butterworth)! characteristic for which

|E(jo)| = 1/[14 (w,/w)®]% (30)
or
|E(jm)]'~’ = 1/[1+(w,/0)¢] (31)
and, in the operational form,
E(p) = 1/(1+2.613/pT,+3.414/pT,2
+2.613/p3T,*+1/p*T,*). (32)

Note that in Eq. (31) and others which will follow, the
ratio of any two frequencies, say o,/w;, is identical to
f./f» Note also that all Butterworth responses are 3 dB
down when o = w,, i.e., 0T, = 1.

A characteristic of Butterworth responses, though not
peculiar to them, which simplifies calculations even fur-
ther is that in all cases

X, = Xj. (33)

Thus in this class or response,
T, =T, (34)
T,=T, (35)
Q.= 1/x (36)
Coo/Cap = X2 2. (37)

Thus in the fourth-order case where
X, = x3 = 2.613 (38)
Xy = 3414 (39)
we have

Q, = 0.383 (40)
C,./Cup = 1.414. (41)

This is alignment no. 5 of Table 1. The term “alignment”
seems appropriate since the problem is similar to the
choice of alignments for other filters, e.g., RF and IF
amplifiers. This is obviously the conventional type of
box alignment, for the box frequency f, is identical with
the speaker resonant frequency f,, and also the frequency
f3 with which the response is —3 dB. Note that because
of the rapid change of attenuation the response is only
—0.9 dB at 1.2f,. -

However, it also shows that a Maximally flat
characteristic is obtained only if the correct values of
box size C,, and especially Q, are chosen also. It is easy
to show from Eq. (20) that in any alignment, at the
upper resonant frequency (f, of Fig. 5), the response is

E(jo) = j(Quuy/ws) /[1— (@p2/w2) ] (42)

that is, the response varies directly with Q,. Also at the
box resonant frequency, f,

E(]w) = (Cub/Cas) (wbg/wsg) (43)

that is, the response is independent of Q,. (The response
at f; is similar to Eq. (42) when o, is replaced by «; but
as this is in the attenuation band, it is less important.)
Thus if Q, is twice the optimum value, there will be a
response peak 6 dB high. Now as a general rule a speaker
with a @ of about 0.4, as required in this case, is usually
of high quality.

A Q of 0.8 is typical of a medium quality speaker and
a Q of 1.6 is typical of a low (“popular” or “skimped-
magnet”) quality speaker. Thus these speakers would

1 Hence the expression Butterworth box. However, in spite

of the phonetic similarity, butter boxes are not in general
suitable as loudspeaker enclosures.

have response peaks (at 1.76w, in this case) of 6 dB and
12 dB, respectively, if fed from a zero output impedance
amplifier, 12 dB and 18 dB if fed from an amplifier with
impedance equal to loudspeaker resistance R, (e.g., pen-
tode with 6-dB negative voltage feedback), and even
more with higher amplifier impedances. Hence the ex-
pression “boom box.”

An amplifier with negative output impedance half that
of the loudspeaker resistance R,, a quite feasible figure,
would correct the medium quality speaker, and reduce
the peak on the cheaper one to 6 dB. An amplifier with
a negative output impedance three quarters of R, to
correct the cheaper speaker, is possible but would need
care in respect of stability (see Section XII).

Fifth-Order Butterworth Response

This has the characteristic

|EGeo)|* = 1/[1+ (0,/0)°]. (44)
The operational form can be factorized to
E(p) = 1/[(1+1/pT,) (1+~/5/pT,
+3/P T2 VI/PTSHPT,N] (45)

which is the characteristic of two filters in cascade: 1) a
first-order filter which can be provided by a CR network
with a time constant T, and 2) a fourth-order filter pro-
vided by a loudspeaker and box for which

T,=T,=T, (46)
0, = 0.447 47)
Cus/Cop = 1. (48)

The alignment, no. 10 of Table I, has the advantage if
the extra box size can be tolerated (a smaller value of
C,s/C,, means a larger box) that a maximally flat re-
sponse can be obtained down to the loudspeaker resonant
frequency, while at the same time, a very simple “rumble”
filter tapers off the input to the amplifier in the attenu-
band. This helps the amplifier, but more importantly it
greatly reduces the maximum flux density in the output
transformer and also the maximum excursion of the loud-
speaker (see Section X and Fig. 10).

Sixth-Order Butterworth Response

This has the characteristic

[E(jo)[* = 1/[14 (w,/w)'?] (49)
while the operational form may be factorized to
E(p) = 1/[(14+1.932/pT,+1/p*T2)
(1+1.414/pT,+1/pT,?)
(140.518/pT,+1/p*T,2)]. (50)

As in the previous case, the overall alignment is
achieved by providing one factor with an external filter,
in this case second order, and making the fourth-order
response of the loudspeaker plus box the product of the
two remaining factors. Thus we can obtain the identical
response in three different ways. These are listed in
Table I as alignments no. 15, 20, and 26, the three sepa-
rate classes depending on whether the auxiliary electrical
circuit has the lowest, middle, or highest x value of the
three factors in the alignment. Not only do the three align-
ments produce the same response, but as shown later
(Section X and Fig. 10) the cone excursions are identical.
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Table I. Summary of loudspeaker alignments.
This illustrates a general principle that box size can where
be exchanged for amplifier power. The only additional y=x2—2 (53)

penalties are as follows:
1) additional heating of the voice coil by signals in
the region of the cutoff frequency, and
2) the requirement of a smaller value of Q, as the box
volume is decreased.
The performance required of the auxiliary filtering is
given in the last four columns of Table I, whose terms
are jllustrated in Fig. 6. Instead of the parameter x in the
expression
E(p) = 1/(1+=x/pT,+1/p?T,?) (51)
the response shapes are defined in Table I by the parame-
ter y in the expression

IE(jw)|2 = 1/[1+y(mo/w)2+(wo/w)4] (52)

as given in a previous paper [6]. When y is zero or posi-
tive there is no peak in the response as shown in Fig. 6,
but when y is negative there is a peak whose frequency
and amplitude are given in Table I. The amplitude of
response at the nominal cutoff frequency f,,, of this
auxiliary filter is given by

|EGo)| = 1/(2+y)% (54)

Chebyshev Responses

If the real values of the poles of a Butterworth func-
tion are all multiplied by the same factor k, which is less
than one, a Chebyshev or “equal ripple” function results
[7]. Chebyshev filters are characterized by a flat response
in the passband except for ripples which are equal in
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amplitude, (sce curve 8 of Fig. 8). Beyond cutoff, the
response falls at a rate whose maximum is greater than
the asymptotic slope. Typical values are tabulated in
Table I with the type names Cy4, Cs, and Cg representing
Chebyshev responses of fourth, fifth, and sixth order. It
will be seen from the table that a considerable change in

_alignment occurs before the ripples become serious in

magnitude. For our purpose here, the Chebyshev re-
sponses provide a means of carrying the useful response
of the speaker plus box combination well below the
speaker resonant frequency f, (which is also cutoff fre-
quency f, in the Butterworth cases). This is done by
tuning the box to below f,, but not as low as the cutoff
frequency (defined here as f;, the frequency where the
response is 3 dB down). The box size C,, is increased,
and to some extent, so is Q.

The increase in useful low-frequency response is con-
siderable. In alignment no. 9, a response down to 0.6f, is
obtainable without amplifier assistance, if a ripple of
1.8 dB can be tolerated. In alignment no. 25, where a
maximum lift of 6 dB is required from the amplifier be-
fore its response falls off, a flat response can be obtained
down to nearly 0.4f,.

e
Y NEGATIVE -

T ASYMPTOTE

1298 PER
CTAVE

QuUTRPUT o

y POSITIVE

Founf o FREQUENCY -

Fig. 6. Typical curves for second-order auxiliary filter,
illustrating terms used in Table I.

Quasi-Butterworth Third-Order Responses

This long name disguises a class of responses charac-
terized by

[EGe) [* = 1/[1+y3(w,/0) 0+ y4(w,/0) 8]

that is, in the expression for the modulus of the fourth-
order filter, there are zero coefficients for the second and
fourth powers of frequency, with nonzero coefficients
for both the eighth and sixth powers. This type of re-
sponse yields a series of alignments, nos. 1-4 of Table I,
in which the cutoff frequency (again defined here as the
frequency f; where the response is 3 dB down) is above
the speaker resonant frequency. So also is the box reso-
nant frequency, but again, not to the same extent. As
the cutoff frequency is made higher, these alignments
require smaller box volumes, and lower values of Q,.

(55)

VI. GENERAL DISCUSSION OF TABLE |

It will be seen that alignments no. 1-9 provide a means
of varying the cutoff frequency of a loudspeaker—box
combination over a wide range. The last two columns
for these alignments illustrate two interesting properties
which remain substantially constant (==5%) over this
wide range.

1) The expression C,,f2/Cy,fs2 is substantially con-
stant around 1.41. This means that if a given speaker for

which Cy, and f, are constant is placed in different boxes
to provide different cutoff frequencies, the box volume
will vary with inverse frequency squared. This illustrates
a fact long known to designers of vented boxes, but
rather blurred by the exponents of ‘“revolutionary new
concepts,” that the bigger the box, the better the low-
frequency response. It is also interesting to note that

Coofs? = 1/47°M,, = S32/4n2M,,, == 1.41C,,fs2  (56)
that is, for a given cutoff frequency of the combination,
the box size varies with the square of diaphragm area
S42 and inversely with M, .. In other words, if the mass
of the loudspeaker M, is fixed and the compliance C,,
is varied to give a different resonant frequency f,, then
the box volume Cg; for a given cutoff frequency f, re-
mains substantially constant. To this extent, and also in
the expression for efficiency (Eq. (66)) the compliance
of the loudspeaker is unimportant.

2) Q.fy/f, lies around 0.38. If Eq. (18) is rewritten as

Qt = “’sMas/Rat (57)

then the expression above becomes w,M,,/R,, which can
be thought of as the total O of the speaker at the box
resonant frequency. This remains nearly constant through-
out alignments no. 1-9.

Certain alignments, no. 13, 14, and 27 with no. 12 as
a borderline case, which require auxiliary filtering with
large attenuation at the cutoff frequency of the whole
system, must be considered suspect, since they postulate
high acoustic efficiencies in the region of cutoff. Remem-
ber that the basis of the theory is that the overall efficiency
is low. In the borderline case, no. 12 for example, the
peak efficiency will be just above cutofl frequency and
will be approximately 2.52 times the loudspeaker effi-
ciency. If the loudspeaker is 4% efficient, this means a
maximum overall efficiency of 25%. Around this point,
the basic assumptions will become inaccurate, especially
if resistive losses in the box are large.

Similarly, for reasons of cone excursion (considered
in Section X), alignments with smaller values of f;/f,
such as nos. 17-19 should be avoided if possible. These
particular alignments which do give good low-frequency
responses in small box volumes would probably be un-
popular anyway since they make such great demands on
amplifier output in the region of cutoff.

Alignment no. 28 is interesting in that it represents the
result of “pure” bass lift. In the other alignments which
use “amplifier aiding,” the response often rises near cut-
off, but always falls off ultimately at lower frequencies
at a rate of 6 or 12 dB per octave. In this way, although
increased amplifier output may be required over a com-
paratively narrow range of frequencies, a greatly de-
creased output, and with it, a greatly decreased cone ex-
cursion, is required at the lower frequencies. But in align-
ment no. 28, a simple low-frequency lift of 6 dB, such as
results from a network with two resistors and a capacitor,
is required. The mean frequency of lift (at which the lift
is 3 dB) is 1.08f;. However, since the maximum lift con-
tinues to the lowest frequencies, the amplifier would be
more likely to cause intermodulation distortion with
“rumble” components. However it does give some de-
crease of box volume compared with alignment no. 5.

It should be emphasized that these alignments are by
no means the only ones possible. They have been chosen
as the ones most likely to be useful and as showing the
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Fig. 7. f+/fv (dashed curves) and C../C., (solid curves)
versus fs/f.. a. For design of medium and large boxes; align-
ment types B.—C., B:~C;, and B—C, class II and IIL. b. For
design of small boxes; alignment types OB+~B, and B+~C,
class I.

trend of results. If more sophisticated filtering in the
amplifier is possible, the choice widens greatly, e.g.,
there are six alignments for the eighth-order Butterworth
response, each with jts fourth-order amplifier filter and
the ratios C,./C,, of 0.518, 0.681, 1.000, 1.316, 1.932,
and 2.543.

Another possibility would be the use, instead of the
“quasi-Butterworth” responses, of “sub-Chebyshev” re-
sponses, i.e., response functions derived by multiplying
the real coordinates of the Butterworth poles by a con-
stant k which is greater than 1.

In answer to the question proposed in 1) of Section
I—What is a large box?—it would appear that a medium
sized box would be one for which V, is about the same
value as V,,, say C,./C,, lies between 1 and 1.414. For
large boxes, C,,/C,, is less than 1, for small boxes C,./
C.p is greater than 1.414. Table I shows that smaller
boxes demand a smaller value of Q,. Thus if Q, is not
properly controlled, the smaller boxes will tend to cause
a greater peak at f,, while larger boxes will cause the
peak to diminish. Fig. 7 is plotted from the points of
Table I. Typical response curves for alignments no. 3, 5,
and 8 are given in Fig. 8.

Vil. TO DESIGN A BOX FOR A GIVEN
LOUDSPEAKER

First, the following three loudspeaker parameters must
be known: 1) the resonant frequency f,, 2) the Q values
Q, and Q,, the latter being usually the controlling fac-
tor. This is discussed in more detail in Section IX, Egs.
(71) and (72), and 3) the acoustic compliance C,,. This
is expressed most conveniently as V,,, the volume of air

whose acoustic compliance is equal to that of the speaker.
Since in general the acoustic compliance, from [3, Eq.
(5.38)1 is given by

C = V/pyet (58)

then

C(N/Ca,b = V(ls/Vh (59)

where V), is the volume of the box.

The design is commenced in one of two ways:

1) If the box size is limited, V, is taken as the assigned
value. Remember this is the net volume, and that the
bracing and the volume displaced by the loudspeaker and
the vent (say 10%) must be subtracted from the gross
volume. From this value and the known value of Ve
the ratio C,./C,, is found, and thence either from Fig. 7
or interpolation from Table I, the values of fs/fe s/
and Q,. Hence f, and f, are found.

2) If a certain frequency response is requircd, then fa
is the starting point. The ratio f,/f, is found, then from
Fig. 7, or by interpolation from Table I, f,/f,, Cos/Cons
and Q,. Hence f, and V, are found.

The choice of alignment will depend largely on what
can be done with the amplifier circuits. For a straightfor-
ward amplifier with no filtering, alignments no. 1-9 would
be chosen. If a slightly larger box is possible, alignments
no. 10 and 11, with their simple CR input filtering make it
possible to ease the power handling requirements of both
speaker and amplifier. If a more sophisticated design of
input filtering is possible as described in Sections V and
XTI, alignments 15-17 can be used to obtain good acoustic
output from small boxes at the expense of higher electrical
power output from the amplifier, while alignments no.
20-25 are the most suitable if a fair sized box is available
and only moderate lift is required from the amplifier,
although in all the fifth- and sixth-order cases, the power
required from the amplifier and the excursion demanded
of the speaker decrease rapidly below cutoff.

Having found f, and V,, the vent dimensions may be
found using the methods of the standard texts [8). How-
ever, the following adaptation of the method has proven
useful for calculation. The standard form is

V), = 1.84 X 108S, /w,2L, (60)

where S, is the cross-sectional area of the vent, in square
inches, and L, is the effective length of the vent, in inches,
which includes its actual length together with an end
correction.
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Fig. 8. Typical response curves for identical loudspeakers,
but different box sizes. Cos/Car = 0.56, 1.41, and 4.46, cor-
responding to alignments no. 8, 5, and 3 (types C,, B,, and
OB;) of Table 1.
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This is written more conveniently as

L,/S, = 1.84 X 108/w,2V,,. (61)

The quantity L,/S,, which has the dimension of inches—1,
is equivalent to an inductance (acoustic mass) which
resonates at », with a capacitance (acoustic compliance)
equivalent to V,. When L,/S, is found, a value is
chosen for the vent area §,. It has been shown already
in connection with Eq. (6) that the radiation resistance,
and therefore the operation of the vented box, is in-
dependent of the value of §,. Now it is usually stated
that S, should normally be the same as the effective
radiating area of the cone [8], i.e., S;. However, this will
often involve an excessive length of vent, especially in
small boxes and at low cutoff frequencies, because, since
L,/S, is fixed, the volume L,S, displaced by the vent
varies as S,2. At the same time, a small amount of
distortion is generated in the vent (see [4, Eq. 6.33])
which is a maximum near the box resonant frequency w,
and is proportional to L,. On the other hand, Novak [2]
quotes 4 in2 as the lower unit.2 As shown before, a
small area vent has still a high value of Q. However,
it will also have higher alternating velocities of air, and
this will limit the amount of acoustic power that can be
handled linearly. The only advice that can be given is
to design the vent area as large as possible in the particu-
lar circumstances, up to a limit equal to the piston area.

The maximum length of L, is usually quoted as \/12
where A is the wavelength of sound at the loudspeaker
resonant frequency f.. The actual requirement is that
the vent, which is essentially a transmission line, should
look like a Iumped constant mass at all the frequencies
for which the box is effective. That is, it must still be
rather shorter than A /4 at frequencies somewhat above f,
of Fig. 5. The value of f, with respect to f, will depend
on the box tuning. But it also varies with C,,/C,;,; with
a smaller box, f, is higher.

With the chosen area of vent, first calculate the part
of L,/S, due to the end correction. This length L” is
usually quoted as

L” = 1.70R (62)
where R is the effective radius of the vent, i.e.,
(L,/Sy) ena = 0.958/~/5,,. (63)

This applies to pipes with both ends flanged. When a
free-standing pipe is used, the end correction is
L” = 1.46R (64)

and
(L./Sy) ena = 0.823/7/5,. (65)
In a pipe the end correction is not usually a large part
of L,/S,. It forms the larger part when the vent is a
simple hole in the front panel and then Eq. (63) is correct.
A method favored by the writer, if styling permits, is
to build a shelf into the bottom of the box as in Fig. 9,
with a spacing ! from the back panel equal to the height

2 This is presumably for the particular case he considers
where f, is 25 Hz, and the acoustic output power is high. For
a higher box resonant frequency and/or lower power, an even
smaller vent area seems permissible.

Fig. 9. Simple method of making a tunnel or duct.

of the opening in the front panel. In this case, the effec-
tive length of the tunnel is the box depth d plus the end
correction as given by Eq. (62) and allowances for
thickness of lumber. This vent is tuned by varying L

When (L,/S.)q is found, it is subtracted from the
required value of L,/S,, and from this, the actual length
L,’ is calculated. If this value is unsuitable, another value
of §, is tried and so on (see Appendix).

With regard to box dimensions, it is desirable to take
all precautions to prevent strong standing waves. If a
corner box is made, the problem is usually fairly easy to
solve since the box sides are splayed at least in two dimen-
sions. If a rectangular box is made, and if styling allows,
the inside dimensions should be in the preferred ratio
for small rooms, that is, 0.8:1.0:1.25 or 0.6:1.0:1.6. In
any case, the speaker should be mounted away from the
center of the front panel.

The need for sound sealing, with good glued joints,
adequate bracing, and adequate damping of the internal
surfaces has been stressed often before, so no more need
be said of it here. The same is true for the improvement
in performance that is obtained by placing the box in the
corner of the room, and also by building the sides of the
box right down to the floor. However, this last does not
seem to be realized sufficiently and the current fad for
mounting all furniture on legs causes much unnecessary
loss of performance in loudspeaker boxes.

Finally the value of Q, required by the alignment is
compared with the values Q, and Q, available, and suit-
able adjustments are made to the amplifier to achieve a
correct overall Q,. This is dealt with in Section XII, and
a worked example is given in the Appendix.
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