

May 2018

BERYLLIUM DRIVER

our experience

FLAGSHIP BERYLLIUM DRIVER

Beryllium has met with great success in terms of image due to some peculiar characteristics that make it – theoretically – one of the best material for the construction of high frequency loudspeakers (tweeters and compression drivers).

- extreme rigidity (Young's Modulus)
- Iow specific weight (density)
- non-deformability (tensile strength)
- speed of sound in the material
- intrinsic damping
- ... and
- all this leads to consider the movement of BE dome as truly pistonic up to the limit of audio band.
- Its high cost and dangerousness have made it an esoteric material relegated to Hi-Fi and High-End systems end PRO audio components

MATERIAL CHARACTERISTICS BERYLLIUM DRIVER

Properties	Beryllium	Titanium	Aluminum	Magnesium	BE vs. TI
Physical Properties					
ρ Density @25°C, g/cm3	1,85	4,51	2,78	1,77	-59%
α CTE @25°C, ppm/°C	11,5	8,60	23,2	26,0	34%
$\overline{\lambda}$ Thermal Conductivity @25°C, W/m·K	216	16,4	193	96,0	1217%
C Specific Heat @25°C, J/g·℃	1,93	0,52	0,88	1,00	268%
MechanicalProperties					
UTS Ultimate Tensile Strength, MPa	370	344	186	255	8%
YS Yield Strength, MPa	240	275	75,8	150	-13%
E Young's Modulus, GPa	310	105	73,1	45,0	195%
v Poisson's Ratio	0,032	0,37	0,33	0,35	-91%
c Speed of Sound, m/sec	12.945	4.825	5.128	5.042	168%

In compression drivers (VC > 2") is used a TI foil with thickness of 40 \div 60 μm on 3" and 4" VC drivers we use same BE thickness: ~ 50 μm

- the weight of the dome alone is less than half (BE vs. TI)
- the Yield Strength is comparable
- the 1° bending mode (break-up frequency) is related to the speed of sound in the material

excellent thermal conductivity allows uniform heat distribution

PRODUCTS BERYLLIUM DRIVER

➢ 4" ND4015BE

OD = 150 mm

> 3" ND3SBE

OD = 120 mm

OD = 131 mm

EIGHTEEN SOUND S.R.L. 2013. All rights reserved, also regarding any disposal, explo©itation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

PERFORMANCE BERYLLIUM DRIVER

- It is not trivial to relate better theoretical driver performance with real measures
- there are many factors that influence overall behavior and it is not always possible to separate contributions from different parts (geometry, materials, process, glues,)
- The differences in traditional measures (frequency domain or time domain) do not highlight sound differences that a listener can clearly perceive.
 - Why is beryllium important for 18S? For us the BE performances are the benchmark to compare other dome materials and different solutions (geometry, glue, ...)

MEASURE AND COMPARISON BERYLLIUM DRIVER

4" BE vs TiN

PROFESSIONAL

> 3" BE vs. TI

EIGHTEEN SOUND S.R.L. 2013. All rights reserved, also regarding any disposal, exploDitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

MEASURE AND COMPARISON BERYLLIUM DRIVER

Time domain: waterfall

PROFESSIONAL

ND4015BE vs. NSD4015N (nitride coated TI)

 \triangleright ND3BE vs. ND1480

MEASURE AND COMPARISON BERYLLIUM DRIVER

thanks

